Nonlinear physics
Explore an example
Swift–Hohenberg equation
Simplistic pattern formation
$\pd{u}{t}=ru - (1+D\nabla^2)^2u+au^2+bu^3+cu^5$ with periodic boundary conditions
Complex Ginzburg–Landau
A world of complexity
$\pd{\psi}{t}=(D_r+\i D_i)\nabla^2 \psi+(a_r+\i a_i)\psi+(b_r+\i b_i)\psi|\psi|^2$
Cahn–Hilliard equation
Phase separation
$\pd{u}{t}=\nabla^2 (F(u)-g\nabla^2u)+f(u)$
Kuramoto–Sivashinsky equation
Phase separation
$\pd{u}{t}=-\nabla^2u-\nabla^4u-|\vnabla u|^2 $
The Gray–Scott model
Complex reaction–diffusion
$\pd{u}{t}=\nabla^2 u+u^2v - (a+b)u$, $\pd{v}{t}=D\nabla^2v -u^2v + a(1 - v)$
Viscous Burgers' equation
Nonlinear waves
$\pd{u}{t} =-u\pd{u}{x}+\varepsilon \pdd{u}{x}$
Pattern formation & advection
Moving patterns
Solitons in the Korteweg–De Vries equation
Solitary movement through each other
$\pd{\phi}{t}=-\pdn{\phi}{x}{3}-6\phi \pd{\phi}{x}$
The Perona–Malik equation
Image denoising via nonlinear anisotropic diffusion
$\pd{u}{t}=\vnabla \cdot \left (\mathrm{e}^{-D |\vnabla u|^2}\vnabla u\right) $
Hyperbolic Reaction-Diffusion Systems
Turing-Wave instabilities
$\tau\pdd{u}{t}+\pd{u}{t}=D_u\nabla^2 u+f(u,v)$, $\tau\pdd{v}{t}+\pd{v}{t}=D_v\nabla^2v+ g(u,v)$